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Multicomponent diffusion in two-temperature magnetohydrodynamics
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A recent hydrodynamic theory of multicomponent diffusion in multitemperature gas miftliwrés Ram-
shaw, J. Non-Equilib. Thermodyii8, 121 (1993] is generalized to include the velocity-dependent Lorentz
force on charged species in a magnetic fiBldThis generalization is used to extend a previous treatment of
ambipolar diffusion in two-temperature multicomponent plasfidadd. Ramshaw and C. H. Chang, Plasma
Chem. Plasma Procesk3, 489(1993] to situations in whichB and the electrical current density are nonzero.
General expressions are thereby derived for the species diffusion fluxes, including thermal diffusion, in both
single- and two-temperature multicomponent magnetohydrodynaMid®). It is shown that the usual zero-
field form of the Stefan-Maxwell equations can be preserved in the prese®éfntroducing generalized
binary diffusion tensors dependent & A self-consistent effective binary diffusion approximation is pre-
sented that provides explicit approximate expressions for the diffusion fluxes. Simplifications due to the small
electron mass are exploited to obtain an ideal MHD description in which the electron diffusion coefficients
drop out, resistive effects vanish, and the electric field reduces to a particularly simple form. This description
should be well suited for numerical calculatiopS1063-651X96)06406-9

PACS numbses): 52.25.Dg, 52.25.Fi, 52.25.Vy, 52.25.Ya

I. INTRODUCTION this type include the common textbook cases of fully ionized
two-component plasmas and three-component plasmas in
Theoretical work in plasma physics is frequently re-ionization equilibrium, but in a generic sense such cases are
stricted to two- or three-component plasmas for simplicity.highly exceptional.
Real plasmas, however, are generally multicomponent mix- Multicomponent diffusion is therefore an essential but
tures in which several different types of ions and neutralsomewhat neglected ingredient in MHD descriptions of par-
atoms are present in different and varying concentrationsially or fully ionized plasmas. Unfortunately, the standard
Such plasmas are largely intractable analytically, but there ikinetic theory of gasef7—9] requires nontrivial generaliza-
a growing interest in studying them by means of detailedtiions in order to describe the diffusion of charged species in
numerical simulation$1—3]. Such simulations must neces- a magnetic field, especially in two-temperature plasmas ex-
sarily be based on general theoretical relations valid for amibiting persistent temperature differences between the elec-
arbitrary mixture ofN components. Moreover, these rela- trons and heavy particles. These generalizations have been
tions must be expressed in a form suitable for numericapursued by several intrepid authd@-16]. However, such
implementation and solution. treatments quite understandably tend to be highly formal,
Single-fluid or magnetohydrodynami@VHD) descrip- and the results are not in general well suited to the actual
tions are commonly used to represent low-frequency dynumerical evaluation of the diffusion fluxes.
namical phenomena in plasmfg—6]. However, the term It has been shown recently that the complications arising
“single fluid” is somewhat misleading, since the plasmafrom two (or multiple) temperatures are much more easily
must still be treated as a mixture of different components ohandled within the framework of a hydrodynamic theory of
species, the concentrations of which appear as separate d#iffusion[17—-19. This theory was subsequently used to de-
pendent variables in the description. Each such componenklop a tractable formulation for ambipolar diffusion in two-

satisfies a continuity equation of the form temperature plasmas in zero magnetic fi@dd]. The hydro-
5 dynamic approach is equally amenable to the inclusion of
N magnetic field effects, and the main purpose of the present
at V- (pi) Veditor, @ paper is to extend the formulation 0] to cases in which

the magnetic fieldB and electrical current density, are
wherep; is the partial mass densitynass per unit volume nonzero. However, this extension requires a reconsideration
of specied, J; is the diffusive mass flux of speciéselative  of the hydrodynamic theory of Ref17], which was origi-
to the mass-weighted velocity of the plasma as a whole, nally developed under the tacit assumption that velocity-
and p; represents the rate of change @fdue to chemical dependent forces are absent. This restriction must be re-
reactions, including ionization and recombination processesnoved so that the velocity-dependent Lorentz force may be
The plasma is a ‘“single fluid” only in the sense thatis  included in the formulation. Fortunately, the required modi-
determined by a single momentum equation, but constitutivéications are straightforward, and we thereby obtain general-
relations for the diffusion fluxeg; are still required to deter- ized Stefan-Maxwell (SM) equations, which are two-
mine the species densitigs and close the system. Only in temperature generalizations of those previously given for
very special situations can the be determined by means of single-temperature plasmas in a magnetic field with thermal
other relations, without knowledge of thk. Situations of diffusion neglected8,10]. These equations constitute a com-
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plete tractable description of multicomponent diffusion inof the free electrons. Thus;=T for i#e and T;=T, for
two-temperature plasmas in a magnetic field. This descripi=e, where the subscrig symbolically denotes the species
tion should be well suited for practical applications. index of the free electrons. The mass-weighted velagiof

The generalized SM equations contain two types of phethe mixture is related to the individual species velocities by
nomenological coefficients, namely, frictional and thermo-pu==3,p;u;, wherep=23;p; is the total mass density of the
phoretic force coefficients. Determination of the actual nu-plasma mixture. The species diffusion fluxes are then given
merical values of these coefficients falls outside the scope dfy J;= p;(u;—u).
the present theory. This problem has unfortunately not been The body forced; are taken to be of the form
solved in full generality, but reasonable values for these co-
efficients can generally be inferred from the results of simple
[17-19,2] or more sophisticateB—-15,23 kinetic theories. Fi=g+q;
Alternatively, these coefficients may be regarded as empiri-
cal parameters to be obtained from experiments.

The paper is organized as follows. In Sec. Il we revisit thewhereg is the acceleration of gravityy; is the charge per
hydrodynamic theory in order to incorporate the modifica-unit mass of specie E is the electric field, an@ is the
tions needed to treat velocity-dependent forces. These modsPeed of light. We shall presume tHgt is of the general
fications result in generalized SM equations for either singleform [17]
or two-temperature plasmas in a magnetic field. These are
the fundamental equations on which the remainder of the Fij=aj- (u;—uj) + B - VInT;— B;; - VInT;, )
development is based. They have a somewhat more general

structure than the SM equations Br=0, which manifestly yhere @; and B; are frictional and thermophoretic force
depend only on differences between velocities of differentqefficients, respectively, which now become tensors due to

species. In Sec. lll, however, we show that the generalizeg,q presence dB [10]. The former coefficients are symmet-
SM equations may nevertheless be cast into the same form as (i,j), whereas the latter are nt7]. Approximate

those forB=0 by introducing generalized binary diffusion expressions for these coefficients whBr-0 are given in
tensors dependent 0B. In Sec. IV we present a self- pets [17-19. Corresponding expressions for nonzeBo
consistent effective binary diffusiofSCEBD) approxima- 3y apparently not been derived in full generality, but re-
tion 23,24}, which leads to explicit approximate expressionsgits are available in particular cage®,13,21,
for the diffusion fluxes. In Sec. V-we explore the simplifica-  yyifiuid dynamical descriptions of the present type typi-
tions that result in the ideal MHD limit of zero electron .y reduce to a diffusional description when the friction
mass. In this limit the electron diffusion coefficients drop .gefficients are largEL7,25. This is the situation of present
out, resistive effects vanish, and the electric field reduces t0 arest. The effect of large friction is to prevent and/or de-
particularly simple form. This description should be well g6y any Jarge differences between species velocities, so that
suited for numerical calculations, as the very large electron of the individual species velocitiag become very nearly
diffusivities no longer appear and therefore cannot give ris%qual to the mass-averaged velocity It then becomes a
to stiffness or ill conditioning. Section VI contains a few good approximation to replacB-u-/bt by Du/Dt in Eq

; iUj .
concluding remarks. (2), whereD/Dt=4/dt+u-V is the standard convective de-

rivative. Equation(2) then becomes

: 4

1
E+—UiXB
Cc

Il. TWO-TEMPERATUE STEFAN-MAXWELL EQUATIONS
IN A MAGNETIC FIELD

Just as if17], we begin by writing the momentum equa- Pipt = _Vpi+PiFi+; Fij - (6)
tions for the individual species, which take the familiar
form One might at first think that consistency would require the
D;u; simultaneous replacement af by u in Eq. (4). However,
Pi DL~ —Vp;+piFi+ E Fij » (2)  this would further reduce the accuracy of the approximation,
i

since for large but finite values of the; , the derivatives of
the u; may be expected to be more nearly equal thanuthe
themselves(That is to say, the relative or percentage devia-
tions of theD,u; /Dt from Du/Dt will generally be smaller
—F; is the mean force per unit volume of specigon than the corresponding deviations of thefrom u, so that

species, thej summation extends over thecomponents in less error is introduced by neglecting the former deviations

the mixture, and viscous effects have been neglected. Atteril@n the latter. Note in particular that if the differ by small
tion is restricted to ideal gases, for which constant amounts, the differences between their derivatives

are zerg. We therefore retain Ed4) in its present form, in
pi=pikeTi/m;, ®) accordance with the usual practif® 10. We also remark
that the approximation leading to E() doesnot imply a
wherekg is Boltzmann'’s constant, anid andm; are, respec- corresponding restriction to small differences between the
tively, the temperature and particle mass of specida the  electron and heavy-patrticle temperatures, since the character-
present context, the temperatures of all the heavy species aigdic or relaxation time scale for temperature equilibration is
presumed equal, but possibly different from the temperaturenuch slower than that for velocity equilibrati¢6,10].

where u; is the mean velocity of speciesi,
D;/Dt=dldt+u;-V, p; is the partial pressure of species
F; is the body force per unit mass acting on specjds; =
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The total momentum equation for the plasma is obtained Only N—1 of the SM equation$8) are linearly indepen-
by summing Eq(6) over all species, with the result dent (whereN is the number of species in the plasma, in-
cluding the free electromsas their sum over species reduces
Du 1 to an identity. The constraints imposed by the given values
Pbot ~ —Vp+§i: piFi=—=Vp+pg+ -JeXB, (D ofuand Jq provide two additional equations, so that there
areN+1 equations in thaN+1 unknownsu; andE. (The
whereJ,==p;q;u; is the electrical current density, and use magnetic field8 may also be regarded as known, since it is
has been made of Eq4) and the neutrality condition determined by Faraday's Law in MHPt—6].) The solution
>,piq;=0, which is an identity in MHD[4,5]. Equation(7) ~ Of these equations therefore determiftess well as they; or
is of course simply the standard MHD momentum equatiory; » and this implicitly determines the relation betweeand
[4—6]. This equation determinas, which should therefore Jq; i-€., Ohm’s law. It follows that Ohm'’s law is not an
be regarded as a given quantity rather than a derived quantitjdependent constitutive relation in multicomponent MHD,
determined by the;, . That is to sayy is a constraint on the but is rather a consequence and combination of the constitu-
u; rather than a consequence of the Similarly, the current tive relations for the species diffusion fluxgk0,13. Thus it
density J, in MHD is determined by Ampere’s law, and IS not in general possible to expredgdirectly in terms of
should also be regarded as a given quantity that representga Or Vice versawithout determining the; .

second constraint on the . In contrast to the SM equations in zero magnetic field, Eq.
Combining Egs(5)—(7), we obtain (8) no longer depends on velocity differences alone but now
involves absolute velocities through the< B term. The SM
pidi equations therefore have a somewhat different mathematical
> aj- (U —u)+ o uix B=G, (8  structure in the presence Bf However, their structure can

! nevertheless be restored tos- 0 form by suitable manipu-

where lations, as shown in the next section.

[ll. GENERALIZED BINARY DIFFUSION TENSORS

Yi
Gi=pVz+(z—y)Vp+ =J;XB—p,giE—y, (9 . . . I
SPVZH(Z=YIVPE g paE=. (9 Using the neutrality condition, we readily find that the

current density can be rewritten in the form

=2 (B;-VInT;= B;-VInT), (10
=g BVt A =2 py(at e +pa(u-w, (12

z,=p;/p, andy;=p;/p. Equation(8) is a system of gener-
alized SM equations for two-temperature plasmas in a ma
netic field. Their resemblance to the standard SM equations o
[17] can be increased by introducing binary diffusion tensors 2 @+ Pipj
defined by i pC

gwhich combines with Eq98) and (9) to yield
(gi+a)B|-(u—u)=G, (13

D =pzza; (12) whereB is the antisymmetric tensor defined operationally by
b a B-v=BXyv for any vectorv (or equivalently byB=BX U,

However, the friction coefficients; are often more conve- whereU is the unit tensgr and the modified driving forces

nient to work with[13], so we shall retain them in preference Gi* are defined by
to theD;; . y

Equation (8) is reminiscent of a system of generalized G =Gi— _I(Jq+pqiu)><B
SM-like equations derived from kinetic theory by Burgers c
[13]. The essential difference between the two formulations
is that we have decomposed the fordgs into frictional =pVz+(z—Yy)Vp—pid;
terms and terms proportional to temperature gradients,
whereas Burgers effectively decomposes them into frictional (14)
terms and terms proportional to species heat fluxes. The lat-
ter obey a system of SM-like equations of their own, whichThe quantityE+ (1/c)uXx B is of course simply the electric
are coupled to the SM equations for the diffusion velocitiesfield in a coordinate system moving with the fluid velocity
This greatly increases the complexity of the descriptionu. All of the remaining dependence @has been absorbed
which correspondingly increases the barrier to practical apinto the tensor coefficients in the left member of E#3).
plications. Nevertheless, the two formulations are in prin-Comparison with Eq(8) shows that these coefficients may
ciple equivalent if all terms are retained and consistentlybe regarded as generalized friction coefficients defined by
evaluated. The relation between them can be simply seen by
observing that the present formulation could evidently have
been reached by the alternate route of further decomposing
Burgers’ heat flux terms into parts proportional to species
velocities and temperature gradients, and absorbing theorresponding to which we may also define generalized bi-
former into theq; . nary diffusivity tensors by

-%.

1
E+—-uXB
c

PiPj

* _
aij—aij-i-p—c
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B pip; -1 The factorsw; are now tensors, which we shall determine by
D =pzz(a)) '=pzz| a;+ —¢ @ita)B| . requiring the approximation of Eq22) to be consistent with
P (16) the correct values of the; [24]. Thus we combine Eq$20)
and(22) to obtain
By symmetry, thea;; will be of the form[10]
a; =W (W=W;), (23

a; = a,bb+ af; (U—Db), A e S w
[l

whereb=B/|B|. The inverse tensor in E416) can then be ~ The tensorsw; are implicitly defined by Eq(23). They
evaluated in the usual wal6]. Notice thate’;=a} and will clearly be of the same tensorial form as thg; i.e.,
D* =D by construction.
ji — cij =wl Lu—
Combining Eqgs.(13) and (15), we obtain the SM equa- Wi =wibb-+w; (U=bb). (24)

tions in the equivalent but simpler form It follows thatw; - w;=w;-w;, which in turn implies that the

approximation of Eq.22) properly satisfies the condition
2 ai’] (U= ) =G . (18 a;; = a; . (This is actually a special case of the general prop-
! erty that all tensors of the formTbb+T, (U
—bb)+TA(bXU) commute with each other. In what fol-
lows, this property will be freely used as needed without
SUrther commenyj. According to Egs.(17), (20), and (24),

In this form, the SM equations once again involve only dif-
ferences between species velocities, just as they do fi

B=0. Egs.(22) and(23) may be decomposed into
IV. THE SELF-CONSISTENT EFFECTIVE BINARY a‘i',- gwlilw\jl(l— i), (25)
DIFFUSION APPROXIMATION
Ll _ s

The SM equation$B) or (18) constitute a linear system of A=W Vﬁ(l 8ij)s (26)
equations for the species velocities. SCEBD approximations Il o
are often used to avoid solving such systditig,20,23,24 a =Wi(W'—wj), (27)
The SCEBD approximation has recently been reconsidered L
and reformulated as a systematic constructive approximation a =Wy (wh—wi), (28)

to the SM equation$24]. This reformulation removes an | | N N )

ambiguity in earlier versions of the approximation, as well asvherew'==;w; andw-=ZX;w; . Equations(27) and (28)
significantly increasing the accuracy. We now proceed tdinfortunately cannot be solved in closed form for #tjeand
generalize this improved SCEBD approximation to thew; [24], so we shall subsequently propose suitable approxi-

present context. mations for these quantitig€sr more precisely for the ratios
The development of Ref24] is based on a systematic w!‘/wH andw; /w", which are easier to approximate

approximation to the friction coefficienis;; , so the appro- Combining Eqs(21) and(22), we obtain
priate starting point for present purposes is E), which
may be rewritten in the form a; g =W;- (W-a—w;- ), (29

pidi where w-a=ZX;w;-u;. Equation(29) combines with Egs.

aq+——Bl-u=—GCG+aa, (19 (19 and(23) to yield
where (wi-w+ piTqu) ‘U=—Gj+w,-w-a. (30)
a'i:; a;j=albb+aj (U-bb), (200 But according to Eq(23), we also have
wi-w=q;-Q (3D
-1

=a L U 21

G- 2,: -4 @1 where
al=3jal, & ==,af;, and we have adopted the definition Q=U-w" 1 w;=0lbb+ 0 (U-bb), (32)
a;=0 for all i in order to avoid the restrictiopn#i on the
summations. with Ql=1-wl/wl and Qf =1—-w!/w'. Equation (30)

The essence of the SCEBD approximation is to approximay therefore be rewritten in the form
mate thee;; in Eq. (21) in a form that permits an explicit
approximate solution for the diffusion velocities[24]. The Ai-ui=—-Git+ai-a, (33
approximation previously used is given in E@) of Ref.
[24], of which the appropriate tensorial generalization is evi-
dently

where

- g0+
Ai:ai+pqulﬂi'B:ai+plql I
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Equation(33) may now be formally solved fog;, with
the result

1
ui:_aDi'Gi—’—Mi'a’ (35)
|

whereMiEAi‘l- «;, and the generalized effective binary dif-

fusivities D; are defined by
Di=pi- A" (36)

Equation (35) expresses the; in terms ofa, but a itself
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form; i.e., w- =wgp;/\m,. The proportionality constants
w), andw; will of course be different, sincel# ai in gen-
eral. This is immaterial, however, since these constants can-
cel out in evaluatingQ); and therefore need not be deter-
mined or specified. Indeed, we readily find that

W‘i‘_WiL pi Ny

cannot be determined from the same equation, as only

N—1 of these expressions are linearly independgHtis
may be seen by observing that the equivalent @) re-
duces to an identity when summed overHowever,a may
be determined and eliminated simply by requiring theo
be consistent with the mass-weighted velocity 2,y;u;
[23,24; i.e.,

u=-—>, %Di-GiﬁLMo-a, (37)
i

whereMy=2;y;M;. We thereby obtain

a=My

u+ >, %Di-ei), (39
| i
which combines with Eq(35) to yield

1 -1
Ui:__Di‘Gi+Mi'Mo .
Pi

u+>, ?D,--G,-). (39)
T P

W W )
; pi/\m;
so that
Q‘i‘zﬂﬁzl—p'—\/—'zﬂi. (42)
Ej: pi/Nmy

Equation(32) then reduces td2;=Q;U, and Eq.(36) re-
duces td), = piQiAi_l .

V. THE LIMIT OF SMALL ELECTRON MASS

The electron massn, is very small compared to the
masses of the heavy particles, a fact that may be exploited to
simplify the preceding general relations. This will be done
by neglecting terms of order= \/m, in comparison to terms
of order unity. Since the electrical resistivity of the plasma is
itself of ordere [6,26], these simplifications will result in an
ideal MHD description in which resistive effects vanign
the present context, however, the term “ideal” doed im-
ply that the plasma flow as a whole is isentropic. Diffusion
of heavy species, as well as finite-rate chemical reactions, are
still irreversible processes.

The corresponding species diffusion fluxes are then given by

Ji:—%Di-ei+pi(Mi-M51—U)-u

_ Pj
+yi|v|i-|v|01-; p—ij~Gj, (40)
J

A. The Stefan-Maxwell equations
and binary diffusion tensors

We begin by observing that, is of orders [13,17-19.
Equation(8) for i #e can therefore be rewritten as

piq;

2aij.(uj—ui)+Tuixszei (i+e), (43

which manifestly sum to zero as they should. This result is i*e

unfortunately but unavoidably more complicated than the

while the same equation for=e reduces to

corresponding result fd8=0[17,23,24. In particular, it re-
quires the computation dfi+ 1 inverse tensors, namely, the 1
A ! for all i (which then determine th®; and M;) and E=Eo— —U.XB, (44)
Mo 1. However, these inverse tensors can again be analyti- ¢

cally evaluated in the usual wdg]. When B=Q, Aiz_ai, where Eg=(pqe) ~*(Vpe— 7.), and terms proportional to

Mi=Mo=U, and Eq.(39) reduces to its previous simpler y have been neglected singgis of orders2. We observe

form [17,23. , _ that Eq.(44) is essentially equivalent to the— o limit of
We now return to the question of how to approximate theEq_ (9.47 of Ref.[26], which confirms that we have indeed

w; . In the absence oB, where thew; reduce to -scaI.arS passed into the realm of ideal MHD. Equatiéfd) is an

w;, it has been shown[24] that the approximation eypicit expression folE, which may be used to eliminate

W; =Wop; /Jm; (wherew is a proportionality constant inde- g from the G, in Egs. (43. Combining Eqs(9), (43), and

pendent ofi) produces significantly more accurate diffusion (44), we obtain

fluxes than the obvious simple alternativegs=wgp; or

W;=Wgp; /m;. Since motions parallel tB8 are equivalent to 1 0o .

motions inB=0, we shall accordingly adopt the approxima- Z’e aj- (U—u)+ -pigi(Ui—U) XB=G;  (i#e),

tion w‘i‘zwﬁ,pi/\/ﬁ. Moreover,aU and «; are of the same ' (45)

order of magnitudg¢10], so it seems reasonable, in the ab-

sence of other information, to approximatg in the same where
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o Yi determined by means of E¢40), the diffusion velocity of
Gi=pVz+(z—yi)Vp+ JgXB=piaiEo—%. (46)  the electrons is again obtained from E47).

The electron velocityu, can now be eliminated from Eq.
(45) by means of the relation VI. CONCLUDING REMARKS

We have presented a hydrodynamic theory of multicom-
Peqeue:‘]q_;e PiQjy; - (47 ponent diffusion, including thermal diffusion, in two-
temperature plasmas in a magnetic field. The theory provides
By introducing a second type of generalized binary diffusiv-explicit relations that determine the species diffusion fluxes
ity tensor for the heavy species alone, the eliminatiom®f J; in the plasma. These constitutive relations are an essential
can be performed in such a way that the result again involveigredient in the multicomponent MHD equations, which
only differences between species velocities. To this end, wetherwise would not in general be closed. The species diffu-
make use of the neutrality condition to rewrite £4j7) inthe  sjon fluxes are determined in general by the generalized SM

form equations(8) or (18), and in the SCEBD approximation by
Eqgs.(39) or (40). In the limit of small electron mass, the SM

PeQe(Ui—Ue)=2 pid;(uj—u)—Jq, (48) equations reduce to E49), while the SCEBD approxima-
1#e tion simplifies as described in Sec. V B. Although the fric-

tion and diffusion coefficients in these equations are tensors

rather than scalars, the structure of the equations is otherwise
pid; _ similar to that of the equations describing ordinary diffusion

> af - (u—u)=G)+ —acYaxB (i#e), (49 i neutral gas mixturefl7,23,24. The present formulation

I7e Pefe should therefore be equally well suited for practical applica-

where tions.
As we have seen, the hydrodynamic approach followed

which combines with Eq(45) to yield

b PinQinB 0 here and in Refl17] leads naturally to a description of mul-
&= pdeC (50 ticomponent diffusion in terms of generalized SM equations.
These equations must then be solved or approximated to ob-
Note thatajTi:aiTj by construction. tain the species velocities or diffusion fluxes. In contrast,

Equation(49) now constitutes a system bf—1 equations  detailed kinetic theories generally lead to explicit formal ex-
intheN—1 unknownsu; for i #e. Only N—2 of these equa- pressions for the diffusion fluxes in terms of multicomponent
tions are linearly independent, however, since their sum oveather than binary diffusion coefficients[7—9]. Thus the
i #e yields0=0. The additional equation needed to close thejgiter theories effectively obtain the formal solution of the
system is again just the constraint imposed by the givers); equations during the course of their derivation. How-
value of the mass-weighted velocity from ;Nh'Ch the term o6y this apparent advantage is outweighed by the fact that
YeUe may be om|tt.ed SINCYe 1S .Of Orde.fs . Once they, the resulting multicomponent diffusion coefficients are com-
have been determined fo¥ e, ue is obtained from Eq(47). plicated functions of mixture composition and are conse-
quently difficult to compute, whereas the binary friction or
diffusion coefficients in the SM equations are simpler and

The central issue here is the order of magnitud®ghis  more fundamental quantities, which are independent of com-
given by Eq.(36), with ), given by Eq.(42). The deviation position and only involve the species pair in question. These
of Q. from unity is of ordere and may therefore be ne- binary coefficients are given by relatively simple expressions

B. The SCEBD approximation

glected, whereupob, simplifies to [17-19, which may readily be evaluated. Moreover, the hy-

1 drodynamic derivation provides a clear physical interpreta-

Do=pd| a,+ pequ) f[ion of the structure of the SM equations in terms of pairwise
interactions between species. For these reasons, we share the

1 opinion [8,27] that in spite of their implicit nature, the SM
albb+ at(U—bb)+ pequ} , (51)  equations are actually preferable to formal expressions for
c the diffusion fluxes in terms of multicomponent diffusion
coefficients.

=Pe

in which a[L and a are both of ordee. The tensor inverse
can then be evaluated in the usual wW#&)}. When this is
done, we find thab, is of orders ~1, so thatp.D, is of order

e. The j=e term may therefore be omitted from the sum-
mation in Eq.(40) for i #e, which then involves only the This work was performed under the auspices of the U.S.
D; for j#e. The latter in turn involve the; fori#e, which  Department of Energy under DOE Field Office, Idaho Con-
are still given by Eq(20). But thej=e term in the summa- tract No. DE-AC07-941D13223, supported in part by the Di-
tion in Eq.(20) may also be omitted far#e, sincea; is of  vision of Engineering and Geosciences, Office of Basic En-
order . The @, then no longer appear anywhere in the ergy Sciences, DOE-OER, and in part by the INEL Long-
equations. Finally, once th& for i #e have thereby been Term Research Initiative in Computational Mechanics.
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