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A recent hydrodynamic theory of multicomponent diffusion in multitemperature gas mixtures@J. D. Ram-
shaw, J. Non-Equilib. Thermodyn.18, 121 ~1993!# is generalized to include the velocity-dependent Lorentz
force on charged species in a magnetic fieldB. This generalization is used to extend a previous treatment of
ambipolar diffusion in two-temperature multicomponent plasmas@J. D. Ramshaw and C. H. Chang, Plasma
Chem. Plasma Process.13, 489~1993!# to situations in whichB and the electrical current density are nonzero.
General expressions are thereby derived for the species diffusion fluxes, including thermal diffusion, in both
single- and two-temperature multicomponent magnetohydrodynamics~MHD!. It is shown that the usual zero-
field form of the Stefan-Maxwell equations can be preserved in the presence ofB by introducing generalized
binary diffusion tensors dependent onB. A self-consistent effective binary diffusion approximation is pre-
sented that provides explicit approximate expressions for the diffusion fluxes. Simplifications due to the small
electron mass are exploited to obtain an ideal MHD description in which the electron diffusion coefficients
drop out, resistive effects vanish, and the electric field reduces to a particularly simple form. This description
should be well suited for numerical calculations.@S1063-651X~96!06406-9#

PACS number~s!: 52.25.Dg, 52.25.Fi, 52.25.Vy, 52.25.Ya

I. INTRODUCTION

Theoretical work in plasma physics is frequently re-
stricted to two- or three-component plasmas for simplicity.
Real plasmas, however, are generally multicomponent mix-
tures in which several different types of ions and neutral
atoms are present in different and varying concentrations.
Such plasmas are largely intractable analytically, but there is
a growing interest in studying them by means of detailed
numerical simulations@1–3#. Such simulations must neces-
sarily be based on general theoretical relations valid for an
arbitrary mixture ofN components. Moreover, these rela-
tions must be expressed in a form suitable for numerical
implementation and solution.

Single-fluid or magnetohydrodynamic~MHD! descrip-
tions are commonly used to represent low-frequency dy-
namical phenomena in plasmas@4–6#. However, the term
‘‘single fluid’’ is somewhat misleading, since the plasma
must still be treated as a mixture of different components or
species, the concentrations of which appear as separate de-
pendent variables in the description. Each such component
satisfies a continuity equation of the form

]r i
]t

1¹•~r iu!52¹•Ji1 ṙ i
c , ~1!

wherer i is the partial mass density~mass per unit volume!
of speciesi , Ji is the diffusive mass flux of speciesi relative
to the mass-weighted velocityu of the plasma as a whole,
and ṙ i

c represents the rate of change ofr i due to chemical
reactions, including ionization and recombination processes.
The plasma is a ‘‘single fluid’’ only in the sense thatu is
determined by a single momentum equation, but constitutive
relations for the diffusion fluxesJi are still required to deter-
mine the species densitiesr i and close the system. Only in
very special situations can ther i be determined by means of
other relations, without knowledge of theJi . Situations of

this type include the common textbook cases of fully ionized
two-component plasmas and three-component plasmas in
ionization equilibrium, but in a generic sense such cases are
highly exceptional.

Multicomponent diffusion is therefore an essential but
somewhat neglected ingredient in MHD descriptions of par-
tially or fully ionized plasmas. Unfortunately, the standard
kinetic theory of gases@7–9# requires nontrivial generaliza-
tions in order to describe the diffusion of charged species in
a magnetic field, especially in two-temperature plasmas ex-
hibiting persistent temperature differences between the elec-
trons and heavy particles. These generalizations have been
pursued by several intrepid authors@9–16#. However, such
treatments quite understandably tend to be highly formal,
and the results are not in general well suited to the actual
numerical evaluation of the diffusion fluxes.

It has been shown recently that the complications arising
from two ~or multiple! temperatures are much more easily
handled within the framework of a hydrodynamic theory of
diffusion @17–19#. This theory was subsequently used to de-
velop a tractable formulation for ambipolar diffusion in two-
temperature plasmas in zero magnetic field@20#. The hydro-
dynamic approach is equally amenable to the inclusion of
magnetic field effects, and the main purpose of the present
paper is to extend the formulation of@20# to cases in which
the magnetic fieldB and electrical current densityJq are
nonzero. However, this extension requires a reconsideration
of the hydrodynamic theory of Ref.@17#, which was origi-
nally developed under the tacit assumption that velocity-
dependent forces are absent. This restriction must be re-
moved so that the velocity-dependent Lorentz force may be
included in the formulation. Fortunately, the required modi-
fications are straightforward, and we thereby obtain general-
ized Stefan-Maxwell ~SM! equations, which are two-
temperature generalizations of those previously given for
single-temperature plasmas in a magnetic field with thermal
diffusion neglected@8,10#. These equations constitute a com-
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plete tractable description of multicomponent diffusion in
two-temperature plasmas in a magnetic field. This descrip-
tion should be well suited for practical applications.

The generalized SM equations contain two types of phe-
nomenological coefficients, namely, frictional and thermo-
phoretic force coefficients. Determination of the actual nu-
merical values of these coefficients falls outside the scope of
the present theory. This problem has unfortunately not been
solved in full generality, but reasonable values for these co-
efficients can generally be inferred from the results of simple
@17–19,21# or more sophisticated@8–15,22# kinetic theories.
Alternatively, these coefficients may be regarded as empiri-
cal parameters to be obtained from experiments.

The paper is organized as follows. In Sec. II we revisit the
hydrodynamic theory in order to incorporate the modifica-
tions needed to treat velocity-dependent forces. These modi-
fications result in generalized SM equations for either single-
or two-temperature plasmas in a magnetic field. These are
the fundamental equations on which the remainder of the
development is based. They have a somewhat more general
structure than the SM equations forB50, which manifestly
depend only on differences between velocities of different
species. In Sec. III, however, we show that the generalized
SM equations may nevertheless be cast into the same form as
those forB50 by introducing generalized binary diffusion
tensors dependent onB. In Sec. IV we present a self-
consistent effective binary diffusion~SCEBD! approxima-
tion @23,24#, which leads to explicit approximate expressions
for the diffusion fluxes. In Sec. V we explore the simplifica-
tions that result in the ideal MHD limit of zero electron
mass. In this limit the electron diffusion coefficients drop
out, resistive effects vanish, and the electric field reduces to a
particularly simple form. This description should be well
suited for numerical calculations, as the very large electron
diffusivities no longer appear and therefore cannot give rise
to stiffness or ill conditioning. Section VI contains a few
concluding remarks.

II. TWO-TEMPERATUE STEFAN-MAXWELL EQUATIONS
IN A MAGNETIC FIELD

Just as in@17#, we begin by writing the momentum equa-
tions for the individual speciesi , which take the familiar
form

r i
Diui
Dt

52¹pi1r iFi1(
j
Fi j , ~2!

where ui is the mean velocity of speciesi ,
Di /Dt5]/]t1ui•¹, pi is the partial pressure of speciesi ,
Fi is the body force per unit mass acting on speciesi , Fi j 5
2Fj i is the mean force per unit volume of speciesj on
speciesi , the j summation extends over theN components in
the mixture, and viscous effects have been neglected. Atten-
tion is restricted to ideal gases, for which

pi5r ikBTi /mi , ~3!

wherekB is Boltzmann’s constant, andTi andmi are, respec-
tively, the temperature and particle mass of speciesi . In the
present context, the temperatures of all the heavy species are
presumed equal, but possibly different from the temperature

of the free electrons. ThusTi5T for iÞe and Ti5Te for
i5e, where the subscripte symbolically denotes the species
index of the free electrons. The mass-weighted velocityu of
the mixture is related to the individual species velocities by
ru5( ir iui , wherer5( ir i is the total mass density of the
plasma mixture. The species diffusion fluxes are then given
by Ji5r i(ui2u).

The body forcesFi are taken to be of the form

Fi5g1qi SE1
1

c
ui3BD , ~4!

whereg is the acceleration of gravity,qi is the charge per
unit mass of speciesi , E is the electric field, andc is the
speed of light. We shall presume thatFi j is of the general
form @17#

Fi j5ai j •~uj2ui !1bi j •¹lnTj2bj i •¹lnTi , ~5!

whereai j and bi j are frictional and thermophoretic force
coefficients, respectively, which now become tensors due to
the presence ofB @10#. The former coefficients are symmet-
ric in ( i , j ), whereas the latter are not@17#. Approximate
expressions for these coefficients whenB50 are given in
Refs. @17–19#. Corresponding expressions for nonzeroB
have apparently not been derived in full generality, but re-
sults are available in particular cases@10,13,21#.

Multifluid dynamical descriptions of the present type typi-
cally reduce to a diffusional description when the friction
coefficients are large@17,25#. This is the situation of present
interest. The effect of large friction is to prevent and/or de-
stroy any large differences between species velocities, so that
all of the individual species velocitiesui become very nearly
equal to the mass-averaged velocityu. It then becomes a
good approximation to replaceDiui /Dt by Du/Dt in Eq.
~2!, whereD/Dt5]/]t1u•¹ is the standard convective de-
rivative. Equation~2! then becomes

r i
Du

Dt
52¹pi1r iFi1(

j
Fi j . ~6!

One might at first think that consistency would require the
simultaneous replacement ofui by u in Eq. ~4!. However,
this would further reduce the accuracy of the approximation,
since for large but finite values of theai j , the derivatives of
the ui may be expected to be more nearly equal than theui
themselves.~That is to say, the relative or percentage devia-
tions of theDiui /Dt from Du/Dt will generally be smaller
than the corresponding deviations of theui from u, so that
less error is introduced by neglecting the former deviations
than the latter. Note in particular that if theui differ by small
constant amounts, the differences between their derivatives
are zero.! We therefore retain Eq.~4! in its present form, in
accordance with the usual practice@8,10#. We also remark
that the approximation leading to Eq.~6! doesnot imply a
corresponding restriction to small differences between the
electron and heavy-particle temperatures, since the character-
istic or relaxation time scale for temperature equilibration is
much slower than that for velocity equilibration@6,10#.
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The total momentum equation for the plasma is obtained
by summing Eq.~6! over all species, with the result

r
Du

Dt
52¹p1(

i
r iFi52¹p1rg1

1

c
Jq3B, ~7!

whereJq5( ir iqiui is the electrical current density, and use
has been made of Eq.~4! and the neutrality condition
( ir iqi50, which is an identity in MHD@4,5#. Equation~7!
is of course simply the standard MHD momentum equation
@4–6#. This equation determinesu, which should therefore
be regarded as a given quantity rather than a derived quantity
determined by theui . That is to say,u is a constraint on the
ui rather than a consequence of theui . Similarly, the current
density Jq in MHD is determined by Ampere’s law, and
should also be regarded as a given quantity that represents a
second constraint on theui .

Combining Eqs.~5!–~7!, we obtain

(
j

ai j •~uj2ui !1
r iqi
c

ui3B5Gi , ~8!

where

Gi5p¹zi1~zi2yi !¹p1
yi
c
Jq3B2r iqiE2gi , ~9!

gi5(
j

~bi j •¹lnTj2bj i •¹lnTi !, ~10!

zi5pi /p, andyi5r i /r. Equation~8! is a system of gener-
alized SM equations for two-temperature plasmas in a mag-
netic field. Their resemblance to the standard SM equations
@17# can be increased by introducing binary diffusion tensors
defined by

Di j5pzizjai j
21 . ~11!

However, the friction coefficientsai j are often more conve-
nient to work with@13#, so we shall retain them in preference
to theDi j .

Equation ~8! is reminiscent of a system of generalized
SM-like equations derived from kinetic theory by Burgers
@13#. The essential difference between the two formulations
is that we have decomposed the forcesFi j into frictional
terms and terms proportional to temperature gradients,
whereas Burgers effectively decomposes them into frictional
terms and terms proportional to species heat fluxes. The lat-
ter obey a system of SM-like equations of their own, which
are coupled to the SM equations for the diffusion velocities.
This greatly increases the complexity of the description,
which correspondingly increases the barrier to practical ap-
plications. Nevertheless, the two formulations are in prin-
ciple equivalent if all terms are retained and consistently
evaluated. The relation between them can be simply seen by
observing that the present formulation could evidently have
been reached by the alternate route of further decomposing
Burgers’ heat flux terms into parts proportional to species
velocities and temperature gradients, and absorbing the
former into theai j .

Only N21 of the SM equations~8! are linearly indepen-
dent ~whereN is the number of species in the plasma, in-
cluding the free electrons!, as their sum over species reduces
to an identity. The constraints imposed by the given values
of u and Jq provide two additional equations, so that there
areN11 equations in theN11 unknownsui andE. ~The
magnetic fieldB may also be regarded as known, since it is
determined by Faraday’s Law in MHD@4–6#.! The solution
of these equations therefore determinesE as well as theui or
Ji , and this implicitly determines the relation betweenE and
Jq ; i.e., Ohm’s law. It follows that Ohm’s law is not an
independent constitutive relation in multicomponent MHD,
but is rather a consequence and combination of the constitu-
tive relations for the species diffusion fluxes@10,13#. Thus it
is not in general possible to expressJq directly in terms of
E, or vice versa,without determining theJi .

In contrast to the SM equations in zero magnetic field, Eq.
~8! no longer depends on velocity differences alone but now
involves absolute velocities through theui3B term. The SM
equations therefore have a somewhat different mathematical
structure in the presence ofB. However, their structure can
nevertheless be restored to itsB50 form by suitable manipu-
lations, as shown in the next section.

III. GENERALIZED BINARY DIFFUSION TENSORS

Using the neutrality condition, we readily find that the
current density can be rewritten in the form

Jq5(
j

r j~qi1qj !~uj2ui !1rqi~ui2u!, ~12!

which combines with Eqs.~8! and ~9! to yield

(
j

Fai j1
r ir j

rc
~qi1qj !BG•~uj2ui !5Gi* , ~13!

whereB is the antisymmetric tensor defined operationally by
B•v[B3v for any vectorv ~or equivalently byB5B3U,
whereU is the unit tensor!, and the modified driving forces
Gi* are defined by

Gi*5Gi2
yi
c

~Jq1rqiu!3B

5p¹zi1~zi2yi !¹p2r iqi SE1
1

c
u3BD2gi .

~14!

The quantityE1(1/c)u3B is of course simply the electric
field in a coordinate system moving with the fluid velocity
u. All of the remaining dependence onB has been absorbed
into the tensor coefficients in the left member of Eq.~13!.
Comparison with Eq.~8! shows that these coefficients may
be regarded as generalized friction coefficients defined by

ai j*5ai j1
r ir j

rc
~qi1qj !B, ~15!

corresponding to which we may also define generalized bi-
nary diffusivity tensors by
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Di j*5pzizj~ai j* !215pzizjFai j1
r ir j

rc
~qi1qj !BG21

.

~16!

By symmetry, theai j will be of the form @10#

ai j5a i j
i bb1a i j

'~U2bb!, ~17!

whereb[B/uBu. The inverse tensor in Eq.~16! can then be
evaluated in the usual way@6#. Notice thataj i*5ai j* and
Dj i*5Di j* by construction.

Combining Eqs.~13! and ~15!, we obtain the SM equa-
tions in the equivalent but simpler form

(
j

ai j* •~uj2ui !5Gi* . ~18!

In this form, the SM equations once again involve only dif-
ferences between species velocities, just as they do for
B50.

IV. THE SELF-CONSISTENT EFFECTIVE BINARY
DIFFUSION APPROXIMATION

The SM equations~8! or ~18! constitute a linear system of
equations for the species velocities. SCEBD approximations
are often used to avoid solving such systems@17,20,23,24#.
The SCEBD approximation has recently been reconsidered
and reformulated as a systematic constructive approximation
to the SM equations@24#. This reformulation removes an
ambiguity in earlier versions of the approximation, as well as
significantly increasing the accuracy. We now proceed to
generalize this improved SCEBD approximation to the
present context.

The development of Ref.@24# is based on a systematic
approximation to the friction coefficientsai j , so the appro-
priate starting point for present purposes is Eq.~8!, which
may be rewritten in the form

S ai1
r iqi
c
BD •ui52Gi1ai•ai , ~19!

where

ai5(
j

ai j5a i
ibb1a i

'~U2bb!, ~20!

ai5ai
21
•(

j
ai j •uj , ~21!

a i
i5( ja i j

i , a i
'5( ja i j

' , and we have adopted the definition
ai i[0 for all i in order to avoid the restrictionjÞ i on the
summations.

The essence of the SCEBD approximation is to approxi-
mate theai j in Eq. ~21! in a form that permits an explicit
approximate solution for the diffusion velocitiesui @24#. The
approximation previously used is given in Eq.~8! of Ref.
@24#, of which the appropriate tensorial generalization is evi-
dently

ai j>wi•wj~12d i j !. ~22!

The factorswi are now tensors, which we shall determine by
requiring the approximation of Eq.~22! to be consistent with
the correct values of theai @24#. Thus we combine Eqs.~20!
and ~22! to obtain

ai5wi•~w2wi !, ~23!

wherew[( iwi .
The tensorswi are implicitly defined by Eq.~23!. They

will clearly be of the same tensorial form as theai j ; i.e.,

wi5wi
ibb1wi

'~U2bb!. ~24!

It follows thatwi•wj5wj•wi , which in turn implies that the
approximation of Eq.~22! properly satisfies the condition
ai j5aj i . ~This is actually a special case of the general prop-
erty that all tensors of the form Tibb1T'(U
2bb)1T`(b3U) commute with each other. In what fol-
lows, this property will be freely used as needed without
further comment.! According to Eqs.~17!, ~20!, and ~24!,
Eqs.~22! and ~23! may be decomposed into

a i j
i >wi

iwj
i~12d i j !, ~25!

a i j
'>wi

'wj
'~12d i j !, ~26!

a i
i5wi

i~wi2wi
i!, ~27!

a i
'5wi

'~w'2wi
'!, ~28!

wherewi5( iwi
i andw'5( iwi

' . Equations~27! and ~28!
unfortunately cannot be solved in closed form for thewi

i and
wi

'@24#, so we shall subsequently propose suitable approxi-
mations for these quantities~or more precisely for the ratios
wi

i/wi andwi
'/w', which are easier to approximate!.

Combining Eqs.~21! and ~22!, we obtain

ai•ai5wi•~w•a2wi•ui !, ~29!

where w•a[( jwj•uj . Equation ~29! combines with Eqs.
~19! and ~23! to yield

Swi•w1
r iqi
c
BD •ui52Gi1wi•w•a. ~30!

But according to Eq.~23!, we also have

wi•w5ai•Vi
21 , ~31!

where

Vi5U2w21
•wi5V i

ibb1V i
'~U2bb!, ~32!

with V i
i[12wi

i/wi and V i
'[12wi

'/w'. Equation ~30!
may therefore be rewritten in the form

Ai•ui52Vi•Gi1ai•a, ~33!

where

Ai5ai1
r iqi
c

Vi•B5ai1
r iqiV i

'

c
B. ~34!
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Equation~33! may now be formally solved forui , with
the result

ui52
1

pi
Di•Gi1Mi•a, ~35!

whereMi[Ai
21
•ai , and the generalized effective binary dif-

fusivitiesDi are defined by

Di5piVi•Ai
21 . ~36!

Equation ~35! expresses theui in terms of a, but a itself
cannot be determined from the same equation, as only
N21 of these expressions are linearly independent.@This
may be seen by observing that the equivalent Eq.~30! re-
duces to an identity when summed overi .# However,amay
be determined and eliminated simply by requiring theui to
be consistent with the mass-weighted velocityu5( i yiui
@23,24#; i.e.,

u52(
i

yi
pi
Di•Gi1M0•a, ~37!

whereM0[( i yiMi . We thereby obtain

a5M0
21
•S u1(

i

yi
pi
Di•Gi D , ~38!

which combines with Eq.~35! to yield

ui52
1

pi
Di•Gi1Mi•M0

21
•S u1(

j

y j
pj
Dj•Gj D . ~39!

The corresponding species diffusion fluxes are then given by

Ji52
r i
pi
Di•Gi1r i~Mi•M0

212U!•u

1yiMi•M0
21
•(

j

r j

pj
Dj•Gj , ~40!

which manifestly sum to zero as they should. This result is
unfortunately but unavoidably more complicated than the
corresponding result forB50 @17,23,24#. In particular, it re-
quires the computation ofN11 inverse tensors, namely, the
Ai

21 for all i ~which then determine theDi and Mi) and
M0

21 . However, these inverse tensors can again be analyti-
cally evaluated in the usual way@6#. WhenB50, Ai5ai ,
Mi5M05U, and Eq.~39! reduces to its previous simpler
form @17,23#.

We now return to the question of how to approximate the
wi . In the absence ofB, where thewi reduce to scalars
wi , it has been shown@24# that the approximation
wi5w0r i /Ami ~wherew0 is a proportionality constant inde-
pendent ofi ) produces significantly more accurate diffusion
fluxes than the obvious simple alternativeswi5w0r i or
wi5w0r i /mi . Since motions parallel toB are equivalent to
motions inB50, we shall accordingly adopt the approxima-
tion wi

i5w0
i r i /Ami . Moreover,a i

i anda i
' are of the same

order of magnitude@10#, so it seems reasonable, in the ab-
sence of other information, to approximatewi

' in the same

form; i.e., wi
'5w0

'r i /Ami . The proportionality constants
w0

i andw0
' will of course be different, sincea i

iÞa i
' in gen-

eral. This is immaterial, however, since these constants can-
cel out in evaluatingVi and therefore need not be deter-
mined or specified. Indeed, we readily find that

wi
i

wi 5
wi

'

w' 5
r i /Ami

(
j

r j /Amj

~41!

so that

V i
i5V i

'512
r i /Ami

(
j

r j /Amj

[V i . ~42!

Equation ~32! then reduces toVi5V iU, and Eq.~36! re-
duces toDi5piV iAi

21 .

V. THE LIMIT OF SMALL ELECTRON MASS

The electron massme is very small compared to the
masses of the heavy particles, a fact that may be exploited to
simplify the preceding general relations. This will be done
by neglecting terms of order«[Ame in comparison to terms
of order unity. Since the electrical resistivity of the plasma is
itself of order« @6,26#, these simplifications will result in an
ideal MHD description in which resistive effects vanish.~In
the present context, however, the term ‘‘ideal’’ doesnot im-
ply that the plasma flow as a whole is isentropic. Diffusion
of heavy species, as well as finite-rate chemical reactions, are
still irreversible processes.!

A. The Stefan-Maxwell equations
and binary diffusion tensors

We begin by observing thataie is of order« @13,17–19#.
Equation~8! for iÞe can therefore be rewritten as

(
jÞe

ai j •~uj2ui !1
r iqi
c

ui3B5Gi ~ iÞe!, ~43!

while the same equation fori5e reduces to

E5E02
1

c
ue3B, ~44!

whereE0[(reqe)
21(¹pe2ge), and terms proportional to

ye have been neglected sinceye is of order«
2. We observe

that Eq.~44! is essentially equivalent to thes→` limit of
Eq. ~9.47! of Ref. @26#, which confirms that we have indeed
passed into the realm of ideal MHD. Equation~44! is an
explicit expression forE, which may be used to eliminate
E from theGi in Eqs. ~43!. Combining Eqs.~9!, ~43!, and
~44!, we obtain

(
jÞe

ai j •~uj2ui !1
1

c
r iqi~ui2ue!3B5Gi

0 ~ iÞe!,

~45!

where
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Gi
05p¹zi1~zi2yi !¹p1

yi
c
Jq3B2r iqiE02gi . ~46!

The electron velocityue can now be eliminated from Eq.
~45! by means of the relation

reqeue5Jq2(
jÞe

r jqjuj . ~47!

By introducing a second type of generalized binary diffusiv-
ity tensor for the heavy species alone, the elimination ofue
can be performed in such a way that the result again involves
only differences between species velocities. To this end, we
make use of the neutrality condition to rewrite Eq.~47! in the
form

reqe~ui2ue!5(
jÞe

r jqj~uj2ui !2Jq , ~48!

which combines with Eq.~45! to yield

(
jÞe

ai j
†
•~uj2ui !5Gi

01
r iqi

reqec
Jq3B ~ iÞe!, ~49!

where

ai j
†5ai j2

r ir jqiqj
reqec

B. ~50!

Note thataj i
†5ai j

† by construction.
Equation~49! now constitutes a system ofN21 equations

in theN21 unknownsui for iÞe. OnlyN22 of these equa-
tions are linearly independent, however, since their sum over
iÞe yields050. The additional equation needed to close the
system is again just the constraint imposed by the given
value of the mass-weighted velocityu, from which the term
yeue may be omitted sinceye is of order«2. Once theui
have been determined foriÞe, ue is obtained from Eq.~47!.

B. The SCEBD approximation

The central issue here is the order of magnitude ofDe as
given by Eq.~36!, with Ve given by Eq.~42!. The deviation
of Ve from unity is of order« and may therefore be ne-
glected, whereuponDe simplifies to

De5peS ae1
reqe
c

BD 21

5peFae
ibb1ae

'~U2bb!1
reqe
c

BG21

, ~51!

in which ae
i andae

' are both of order«. The tensor inverse
can then be evaluated in the usual way@6#. When this is
done, we find thatDe is of order«

21, so thatreDe is of order
«. The j5e term may therefore be omitted from the sum-
mation in Eq.~40! for iÞe, which then involves only the
Dj for jÞe. The latter in turn involve theai for iÞe, which
are still given by Eq.~20!. But the j5e term in the summa-
tion in Eq.~20! may also be omitted foriÞe, sinceaie is of
order «. The aie then no longer appear anywhere in the
equations. Finally, once theJi for iÞe have thereby been

determined by means of Eq.~40!, the diffusion velocity of
the electrons is again obtained from Eq.~47!.

VI. CONCLUDING REMARKS

We have presented a hydrodynamic theory of multicom-
ponent diffusion, including thermal diffusion, in two-
temperature plasmas in a magnetic field. The theory provides
explicit relations that determine the species diffusion fluxes
Ji in the plasma. These constitutive relations are an essential
ingredient in the multicomponent MHD equations, which
otherwise would not in general be closed. The species diffu-
sion fluxes are determined in general by the generalized SM
equations~8! or ~18!, and in the SCEBD approximation by
Eqs.~39! or ~40!. In the limit of small electron mass, the SM
equations reduce to Eq.~49!, while the SCEBD approxima-
tion simplifies as described in Sec. V B. Although the fric-
tion and diffusion coefficients in these equations are tensors
rather than scalars, the structure of the equations is otherwise
similar to that of the equations describing ordinary diffusion
in neutral gas mixtures@17,23,24#. The present formulation
should therefore be equally well suited for practical applica-
tions.

As we have seen, the hydrodynamic approach followed
here and in Ref.@17# leads naturally to a description of mul-
ticomponent diffusion in terms of generalized SM equations.
These equations must then be solved or approximated to ob-
tain the species velocities or diffusion fluxes. In contrast,
detailed kinetic theories generally lead to explicit formal ex-
pressions for the diffusion fluxes in terms of multicomponent
~rather than binary! diffusion coefficients@7–9#. Thus the
latter theories effectively obtain the formal solution of the
SM equations during the course of their derivation. How-
ever, this apparent advantage is outweighed by the fact that
the resulting multicomponent diffusion coefficients are com-
plicated functions of mixture composition and are conse-
quently difficult to compute, whereas the binary friction or
diffusion coefficients in the SM equations are simpler and
more fundamental quantities, which are independent of com-
position and only involve the species pair in question. These
binary coefficients are given by relatively simple expressions
@17–19#, which may readily be evaluated. Moreover, the hy-
drodynamic derivation provides a clear physical interpreta-
tion of the structure of the SM equations in terms of pairwise
interactions between species. For these reasons, we share the
opinion @8,27# that in spite of their implicit nature, the SM
equations are actually preferable to formal expressions for
the diffusion fluxes in terms of multicomponent diffusion
coefficients.
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